Os metais pesados diferem de outros agentes tóxicos porque não são sintetizados nem destruídos pelo homem. A atividade industrial diminui significativamente a permanência desses metais nos minérios, bem como a produção de novos compostos, além de alterar a distribuição desses elementos no planeta.
A presença de metais muitas vezes está associada à localização geográfica, seja na água ou no solo, e pode ser controlada, limitando o uso de produtos agrícolas e proibindo a produção de alimentos em solos contaminados com metais pesados.
Todas as formas de vida são afetadas pela presença de metais dependendo da dose e da forma química. Muitos metais são essenciais para o crescimento de todos os tipos de organismos, desde as bactérias até mesmo o ser humano, mas eles são requeridos em baixas concentrações e podem danificar sistemas biológicos.
Os metais são classificados em:
- elementos essenciais: sódio, potássio, cálcio, ferro, zinco, cobre, níquel e magnésio;
- micro-contaminantes ambientais: arsênico, chumbo, cádmio, mercúrio, alumínio, titânio, estanho e tungstênio;
- elementos essenciais e simultaneamente micro-contaminantes: cromo, zinco, ferro, cobalto, manganês e níquel.
Os efeitos tóxicos dos metais sempre foram considerados como eventos de curto prazo, agudos e evidentes, como anúria e diarréia sanguinolenta, decorrentes da ingestão de mercúrio. Atualmente, ocorrências a médio e longo prazo são observadas, e as relações causa-efeito são pouco evidentes e quase sempre subclínicas. Geralmente esses efeitos são difíceis de serem distinguidos e perdem em especificidade, pois podem ser provocados por outras substâncias tóxicas ou por interações entre esses agentes químicos.
A manifestação dos efeitos tóxicos está associada à dose e pode distribuir-se por todo o organismo, afetando vários órgãos, alterando os processos bioquímicos, organelas e membranas celulares.
Acredita-se que pessoas idosas e crianças sejam mais susceptíveis às substâncias tóxicas. As principais fontes de exposição aos metais tóxicos são os alimentos, observando-se um elevado índice de absorção gastro-intestinal.
Em adição aos critérios de prevenção usados em saúde ocupacional e de monitorização ambiental, a biomonitorização tem sido utilizada como indicador biológico de exposição, e toda substância ou seu produto de biotransformação, ou qualquer alteração bioquímica observada nos fluídos biológicos, tecidos ou ar exalado, mostra a intensidade da exposição e/ou a intensidade dos seus efeitos.
Recentemente, tem sido noticiado na mídia escrita e falada a contaminação de adultos, crianças, lotes e vivendas residenciais, com metais pesados, principalmente por chumbo e mercúrio. Contudo, a maioria da população não tem informações precisas sobre os riscos e as conseqüências da contaminação por esses metais para a saúde humana.
O caso fatídico em Bauru, SP, é um dos exemplos dessa contaminação. A Indústria de Acumuladores Ajax, uma das maiores fábricas de baterias automotivas do país localizada no km 112 da Rodovia Bauru-Jaú, contaminou com chumbo expelido pelas suas chaminés 113 crianças, sendo encontrados índices superiores a 10 miligramas/decilitro (ACEITUNO, 18-04-2002).
Foram constatados ainda a contaminação de animais, leite, ovos e outros produtos agrícolas, resultando em um enorme prejuízo para os proprietários. Um dos casos mais interessantes foi o de uma criança de 10 anos, moradora de um Núcleo Habitacional localizado próximo à fonte poluidora. Desde os sete meses de idade sofria de diarréia e de deficiência mental. Somente após suspeitas dessa contaminação, em 1999, quando amostras do seu sangue foram enviadas a dois centros toxicológicos nos Estados Unidos, é que foi constatada a intoxicação por chumbo, urânio, alumínio e cádmio (ACEITUNO, 18-04-2002).
A cidade de Paulínia, em SP, e o bairro Vila Carioca também foram contaminados pela Shell Química do Brasil. Em Paulínia, dos 166 moradores submetidos a exames, 53% apresentaram contaminação crônica e 56% das crianças revelaram altos índices de cobre, zinco, alumínio, cádmio, arsênico e manganês. Em adição observou-se também, a incidência de tumores hepáticos e de tiróide, alterações neurológicas, dermatoses, rinites alérgicas, disfunções gastro-intestinais, pulmonares e hepáticas (GUAIUME, 23-08-2001).
Dos 2,9 milhões de toneladas de resíduos industriais perigosos gerados anualmente no Brasil, somente 600 mil toneladas recebem tratamento adequado, conforme estimativa da Associação Brasileira de Empresas de Tratamento, Recuperação e Disposição de Resíduos Especiais (ABETRE). Os 78% restantes são depositados indevidamente em lixões, sem qualquer tipo de tratamento (CAMPANILI, 02-05-2002).
Recentemente a companhia Ingá, indústria de zinco, situada a 85 km do Rio de Janeiro, na ilha da Madeira, que atualmente está desativada, transformou-se na maior área de contaminação de lixo tóxico no Brasil. Metais pesados como zinco, cádmio, mercúrio e chumbo continuam poluindo o solo, a água e atingem o mangue, afetando a vida da população. Isso ocorreu porque os diques construídos para conter a água contaminada não têm recebido manutenção há cinco anos, e dessa forma os terrenos próximos foram inundados, contaminando a vegetação do mangue
Bibliografia
- ACEITUNO, J. Mais 22 crianças estão contaminadas com chumbo em Bauru. O ESTADO DE SÃO PAULO. 12-04-2002.
- ACEITUNO, J. Já são 76 crianças contaminadas por chumbo em Bauru. O ESTADO DE SÃO PAULO. 18-04-2002.
- ACEITUNO, J. Ministério inspeciona atendimento aos contaminados por chumbo. O ESTADO DE SÃO PAULO. 07-05-2002.
- CAMPANILI, M. Apenas 22% dos resíduos industriais têm tratamento adequado. O ESTADO DE SÃO PAULO. 02-05-2002.
- Descoberta a maior área de contaminação de lixo químico do Brasil. JORNAL NACIONAL. 09-04-2002.
- GUAIME, S. Laudo comprova contaminação dos moradores de Paulínia. O ESTADO DE SÃO PAULO. 23-08-01.
- MUNG, M. CPI vai pedir interdição de terminal da Shell em SP. O ESTADO DE SÃO PAULO. 03-05-2002.
- SALGADO, P. E. T. Toxicologia dos metais. In: OGA, S. Fundamentos de toxicologia. São Paulo, 1996. cap. 3.2, p. 154-172.
- SALGADO, P. E. T. Metais em alimentos. In: OGA, S. Fundamentos de toxicologia. São Paulo, 1996. cap. 5.2, p. 443-460.
- TREVORS, J. T.; STRATDON, G. W. & GADD, G. M. Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol., 32: 447-460, 1986.
- ZIMBRES, E. www.meioambiente.pro.br